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Abstract

Particle simulations in fields ranging from biochemistry to astrophysics require the evaluation of interactions between
all pairs of particles separated by less than some fixed interaction radius. The applicability of such simulations is often
limited by the time required for calculation, but the use of massive parallelism to accelerate these computations is typically
limited by inter-processor communication requirements. Recently, Snir [M. Snir, A note on N-body computations with
cutoffs, Theor. Comput. Syst. 37 (2004) 295–318] and Shaw [D.E. Shaw, A fast, scalable method for the parallel evaluation
of distance-limited pairwise particle interactions, J. Comput. Chem. 26 (2005) 1318–1328] independently introduced two
distinct methods that offer asymptotic reductions in the amount of data transferred between processors. In the present
paper, we show that these schemes represent special cases of a more general class of methods, and introduce several
new algorithms in this class that offer practical advantages over all previously described methods for a wide range of prob-
lem parameters. We also show that several of these algorithms approach an approximate lower bound on inter-processor
data transfer.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Simulations in many fields require the explicit evaluation of interactions between all pairs of particles sep-
arated by less than some interaction radius R (near interactions). Examples of such range-limited N-body prob-

lems include molecular dynamics simulations in biochemistry and materials science, gravitational simulations
in astrophysics, particle simulations in plasma physics, and smooth particle hydrodynamic simulations in fluid
dynamics [3–11]. The remaining pairwise interactions are either neglected or approximated using one of sev-
eral less expensive methods [3,12–17]. The computation of near interactions is often the dominant cost in such
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simulations, so efficient methods for parallelizing this computation are critical to accelerating these simula-
tions. Although near interactions can be evaluated in parallel, the communication required to bring particle
pairs together on the same processor can severely limit scalability.

Traditional methods for parallelizing range-limited N-body problems are described in several review papers
[18,19]. They include atom, force, and spatial decomposition methods. Spatial decomposition methods offer an
advantage over atom and force decomposition methods in that the amount of data to be transferred into and
out of each processor (the method’s communication bandwidth) decreases as the interaction radius decreases.
Force decomposition methods, on the other hand, offer an advantage over spatial and atom decomposition
methods in that the communication bandwidth decreases as the number of processors increases.

Two independently developed and recently published methods – Snir’s hybrid method (referred to here as
the SH Method) [1] and Shaw’s NT (for ‘‘Neutral Territory’’) method [2] – combine the advantages of tradi-
tional spatial and force decomposition methods. These newer algorithms have the property that the commu-
nication bandwidth decreases both as the interaction radius decreases and as the number of processors
increases. Table 1 compares the asymptotic scaling properties of the SH and NT methods with those of tra-
ditional methods. The SH and NT methods have the same scaling properties, which are superior to those of
traditional methods. The asymptotic scaling properties of various parallelization methods will be discussed in
more detail in Sections 5 and 6.

It has been shown [2] that both the SH and NT methods offer significant advantages over traditional meth-
ods for practical machine and simulation sizes. Furthermore, the NT method always requires less communi-
cation than the SH method, but the SH method can be optimized using ideas from the NT method such that
the difference is small. The NT-optimized version of the SH method is referred to as the SNT Method [2].

A given processor will compute a significantly different set of near interactions under the NT method
than it would under the SH method. The two methods, however, do share several essential elements. In
both the NT method and the SH method, each processor assumes primary responsibility for all particles
falling within some rectangular box. In both methods, the processor that computes the interaction between
a pair of particles is typically not the one on which either particle resides, but a third processor that imports
both of these particles. In both methods, each processor interacts particles residing in one region of space
with particles residing in another region, after importing some of the particles in each region from other
processors. This suggests that the two methods may be related and raises the question of whether other
new methods exhibiting similar properties might have advantages over both methods for various choices
of problem parameters.

In this paper, we describe a new class of parallelization methods, which we refer to as zonal methods. This
class includes as special cases the NT method, the SH method, and the SNT method, along with traditional
spatial decomposition methods and a number of novel methods introduced in this paper. We refer to a par-
allelization method for range-limited N-body problems as a generalized spatial decomposition method if each
processor assumes responsibility for updating the positions of particles in a distinct region of space, regardless
of where the particle-particle interactions are computed. Generalized spatial decomposition methods can be
divided into home territory methods, in which a pair of particles always interacts on the processor on which
one of them resides, and neutral territory methods, in which a pair of particles may interact on a processor
in which neither of them resides. All zonal methods are generalized spatial decomposition methods, but some
(for example, traditional spatial decomposition methods) are home territory methods, while others (including
the NT, SH, and SNT methods, as well as the new methods introduced in this paper) are neutral territory
methods.
Table 1
Asymptotic scaling properties of communication bandwidth required by various parallelization methods

Exploitable range limitation Scaling with number of processors

Atom decomposition methods None No scaling
Force decomposition methods None O(p�1/2) scaling
Spatial decomposition methods O(R3) neighbors No scaling
NT and SH methods O(R3/2) neighbors O(p�1/2) scaling

R is the interaction radius and p is the number of processors.
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Which parallelization method minimizes inter-processor communication bandwidth depends on the prop-
erties of both the computation to be performed (e.g., the interaction radius and the dimensions of the physical
system) and the hardware available for the simulation (e.g., the number of nodes and the network topology).
In this paper, we analyze the communication requirements of a variety of zonal methods. We describe new
methods that require less communication bandwidth than any previously published methods for a wide range
of such parameter values, including those associated with many practical systems. In some cases, these new
methods represent minor variations on the NT and SNT methods; in others, they constitute entirely novel
methods.

Section 2 reviews the NT and SH methods, as well as a traditional spatial decomposition method that we
call the HS Method. Sections 3 and 4 describe the general class of zonal methods, and introduce certain tools
that prove useful for their analysis. In Section 3, we assume that each processor will interact particles from a
single spatial region with particles from another single spatial region. We describe the pairs of regions one can
choose to ensure that all near interactions are computed. We also present a systematic process to take advan-
tage of the fact that each particle interacts with other particles that reside within a surrounding sphere, rather
than a cube; we refer to this process as rounding. The HS, NT, and SNT methods already exploit a form of
rounding, but some methods support a stronger form that we refer to as three-dimensional rounding.

Section 4 generalizes the ideas of Section 3 by considering k-zone methods that specify a set of spatial
regions along with a schedule that determines the order in which each processor must compute interactions
between particles from various pairs of regions. Such methods can further reduce communication require-
ments and can increase the extent to which communication and computation are performed simultaneously.

In Section 5, we derive lower bounds on the amount of data to be communicated by any zonal method.
These bounds, which depend particularly on the interaction radius and on the number of processors available,
guide the design of novel parallelization methods. In Section 6, we specify several methods, each of which has
the lowest communication bandwidth requirement of any published method of which we are aware for some
set of practical parameter settings. While we do not prove these methods to be optimal, we show that they
come close to an approximate lower bound on communication bandwidth requirements.

2. Existing parallelization methods and terminology

We refer to the region containing the system to be simulated as the global cell. Zonal methods require that
the global cell be divided into a lattice of identically shaped regions, with each processor assuming primary
responsibility for updating the coordinates of all particles in that subregion. To simplify our exposition, we
will assume in this paper that the global cell is a rectangular parallelepiped of dimensions Gx · Gy · Gz and
that it is divided into a regular, three-dimensional grid of smaller rectangular parallelepipeds that we call
boxes. Each processor updates the coordinates of particles in one box, referred to as the home box of that
processor, of those particles, and of any point in the box. In the interest of simplicity, we will refer inter-
changeably to a processor and its home box. The dimensions of each box are bx · by · bz. We refer to the
quantities bx/by and bx/bz as the box aspect ratios. The base coordinates of a given box (and of any particle
located within that box) are defined as the coordinates of the low-coordinate corner of that box. We will
assume that the low-coordinate corner of the global cell has coordinates (0, 0 ,0). If a box has base coordinates
(cx,cy ,cz), we define the coordinates (cx/bx,cy/by ,cz/bz) as the logical base coordinates of that box and of any
particle located within that box.

We will assume that the global cell tiles an infinite space by repeating in each dimension with a period equal
to the side length of the global cell in that dimension. The periodic boundary conditions imposed by this
assumption simplify our exposition, but the methods discussed in this paper are also applicable to systems
with other boundary conditions. We will also assume for simplicity that Gx P bx + 2R, Gy P by + 2R, and
Gz P bz + 2R, so that at most one image of a given particle interacts with any particle in a given box.1
1 While the base coordinates (cx,cy ,cz) of a given box will satisfy cx 2 [0,Gx], cy 2 [0,Gy], and cz 2 [0,Gz], the coordinates of an imported
particle may fall outside those ranges, indicating that the particle was imported from a different image of the global cell. When specifying
the box on which a pair of particles will interact, we treat corresponding particles in different images of the global cell as separate particles
with different coordinates.
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This section describes the NT and SH methods as well as an example of a traditional spatial decomposition
method, the HS (for ‘‘Half-Shell’’) method. These methods can each be described using two spatial regions
called zones. Each method interacts all particles in one zone with all particles in the other zone (subject to
a local filtering process to be described later). The location of each zone is specified relative to the box in which
these interactions take place (the interaction box), and each box has the same spatial relationship with its zones
as each other box. For each of these three methods, both zones include the interaction box itself, but are other-
wise non-intersecting.

We refer to particles that reside within a particular box as local to that box, and to other particles as remote

from that box. Similarly, we refer to interactions between particles that have the same home box as local inter-

actions, and to interactions between particles with different home boxes as remote interactions.
We refer to the region of space from which a given processor ‘‘imports’’ data that ordinarily resides within

other processors as its import region, and to the volume of its import region as its import volume (Vi). If particle
density is uniform, the amount of particle data that must be transferred into each processor is proportional to
its import volume. Particle density is approximately uniform in many particle simulations – e.g., in explicit
solvent molecular dynamics and other kinds of condensed matter or fluid simulations – so we will use import
volume as a measure of communication bandwidth requirements.

For the parallelization methods discussed in this paper, the shape of the import region depends only on the
ratios of the box side lengths to the interaction radius R. In three dimensions, the ratio of the import volume
Vi to the box volume Vb for a particular method can be determined uniquely given R/bx, R/by, and R/bz. Alter-
natively, Vi/Vb can be expressed as a function of the box aspect ratios bx/by and bx/bz and the parallelization
parameter aR, where we define aR as the geometric mean of R/bx, R/by, and R/bz:
2 Va
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For cubic boxes of side length b, aR is simply R/b. The parallelization parameter aR might be viewed as a mea-
sure of the extent to which a particular simulation has been parallelized. For convenience, we also define the
normalized box side lengths ax ¼ bx=V 1=3

b , ay ¼ by=V 1=3
b , and az ¼ bz=V 1=3

b , which can be uniquely determined
from the box aspect ratios.

When interacting a pair of particles a and b, we may wish to compute either a single quantity summarizing
the interaction (e.g., an interaction energy) or one quantity for each of the two particles (e.g., the force exerted
on each). The former scenario may be viewed as a special case of the latter, as we can assign a single quantity,
or a scaled version of that quantity, to both particles. For the sake of generality, we will assume throughout
this paper that we wish to compute one quantity for each of the two particles, and we will refer to the quantity
associated with particle a as the influence of b on a and to the quantity associated with particle b as the influ-
ence of a on b.2 In the HS, NT, and SH methods, a pair of particles always interacts in a single processor that
computes the influence of each particle on the other.

2.1. HS method

In traditional spatial decompositions, two particles always interact within a box in which at least one of
them resides. In the HS method, the particles interact within the home box of the particle with the smaller
x base coordinate. If the two particles have the same x base coordinate, the particles interact within the home
box with the smaller y base coordinate. If they also have the same y base coordinate, they interact within the
home box with the smaller z base coordinate. If the two particles reside within the same box, they interact
within that box.

As a result, each interaction box has an import region that consists of half the points external to the inter-
action box that lie within a distance R of the interaction box. Fig. 1 shows this import region in red and the
interaction box itself in purple. Every particle in the interaction box interacts with every imported particle, and
riants of the methods described in this paper are also applicable to cases where one wishes to compute the influence of one set of
es on another set of particles, but not vice versa – for example, if one wishes to map charge from atoms to mesh points.



Fig. 1. Zones associated with each of several previously described parallelization methods. The interaction box and import region are
shown for the HS method (left), the NT method (middle), and the SH method (right). In each case, one zone consists of the union of the
interaction box (purple) and the red region, while the other consists of the union of the interaction box and the blue region. The import
region consists of the union of the red and blue regions.
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with every other particle in the interaction box. Equivalently, the two zones are (a) the interaction box itself,
and (b) the union of the interaction box and the import region.

This method is guaranteed to interact all pairs of particles separated by less than a distance R. Because the
interaction box has a finite volume, however, this method might, in the absence of any modifications, also
interact some pairs separated by a distance greater than R. By way of example, if the x base coordinate of
the interaction box is cx, a particle within the interaction box whose x coordinate is cx + d (for some suffi-
ciently small positive value of d) could be interacted with a particle within the import region whose x coordi-
nate is cx + bx + R � d, despite the fact that the two particles are separated by a distance greater than R. Such
excess interactions can be eliminated by explicitly testing the distance between each pair to be interacted.
Other tests can be used to ensure that a given particle residing within the interaction box does not interact
with itself, and that each local interaction is computed once rather than twice. The application of such tests
to eliminate inappropriate interactions will be referred to as filtering. Throughout this paper, when considering
whether a particular method guarantees that all required particle interactions are computed, we will ignore
filtering, as it will be used only to eliminate unnecessary interactions.

2.2. NT method

In the NT method, two particles interact within a box that has the x and y base coordinates associated with
one particle and the z base coordinate associated with the other particle. Specifically, the x and y base coor-
dinates of the interaction box are those of the particle with the smaller x base coordinate, with ties broken first
in favor of the particle with the smaller y base coordinate and then in favor of the particle with the larger z

base coordinate. The z base coordinate of the interaction box is the z base coordinate of the other particle.
The resulting import region of each interaction box is the union of its outer tower and outer plate. The outer

tower is shown in blue in Fig. 1, and comprises all points that lie directly above or below the interaction box
within a distance R of the boundary. The outer plate is shown in red, and includes half of the region external
to the interaction box that lies in its xy-plane within a distance R of the boundary. The zones are the tower,
which consists of the union of the outer tower and the interaction box, and the plate, which consists of the
union of the outer plate and the interaction box.

Interacting each particle in the tower with each particle in the plate ensures that all near interactions
will be computed at least once [2]. To ensure that no near interaction is computed more than once, we
can filter pairwise interactions such that plate particles in the interaction box will not interact with particles
in the lower half of the outer tower. The filtering criteria of the HS method are also necessary. One can
minimize the import requirements of the NT method by choosing the box aspect ratios appropriately [2].
2.3. SH method

The SH method employs a cubical box of side length b. An interaction box with logical base coordinates
(i, j,k) imports particles from two zones. The first is a contiguous region that we refer to as the base. This zone
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is shown in blue and purple in Fig. 1, and consists of the set of boxes with logical base coordinates
(i + u,j,k � w1), where u 2 [�r, r], w1 2 ½0;~r � 1�, r = ØR/bø and ~r ¼ d

ffiffiffiffiffiffiffiffiffiffiffi
r þ 1
p

e. The second zone is a set of
non-contiguous regions that we refer to as the comb. This zone is shown in red and purple in Fig. 1, and con-
sists of the set of boxes with logical base coordinates ði; jþ v; k þ w2~rÞ, where v 2 [�r, r] and w2 2 ½0; br=~rc�.
Note that both the comb and the base include the interaction box. Snir [1] showed that interacting the comb
and base ensures that all near interactions will be computed at least once. Filtering is required to ensure that
each near interaction is computed only once, as for the NT method.
3. Two-zone methods

The HS, NT, and SH methods differ in their choice of zones, which in turn determine their import regions.
In this section, we consider the question of which zone choices will guarantee that all required interactions are
computed. We consider methods with two zones, and we assume that interactions are computed between each
particle in one zone and each particle in the other zone, subject to filtering. In all cases, both zones include the
interaction box itself but are otherwise non-intersecting.

We focus initially on describing a broad class of parallelization methods for range-limited N-body prob-
lems. The merits of various methods are considered later.
3.1. Simplified model

For clarity of exposition, we initially consider a simplified problem where:

1. The particles are restricted to the two-dimensional xy-plane.
2. A pair of particles are required to interact if they are separated by a distance less than R in the x dimension

and by a distance less than R in the y dimension.
3. The only allowable parallelization schemes are those whose zones consist only of a set of complete boxes.

We refer to such a parallelization scheme as a voxelized method.
4. We will ignore the fact that when computing the influence of two particles on one another, one typically

uses the same data, which may (depending on problem-specific considerations) make it advantageous to
perform the computation on the same processor. Instead, we assume that each processor computes the
influence of particles in one zone (the red zone) on particles in the other zone (the blue zone), but not vice

versa.

These simplifying assumptions will be progressively relaxed.
We define the influence region of a box as the smallest region of space that is guaranteed to contain all par-

ticles with which any particle in the box could interact. In this simplified problem, the influence region is a
rectangle extending a distance R beyond the box in the positive and negative x and y directions.

An analog to the HS method for the simplified problem is shown in Fig. 2(a). Each box computes the influ-
ence on its own particles of all particles in its influence region. Each box imports all the particles in its influence
region that do not already reside in the box.

An analog to the NT method is shown in Fig. 2(b). In this method, each box computes the influence of all
particles in a row of neighboring boxes spanning the influence region horizontally (red) on all particles in a
column of neighboring boxes spanning the influence region vertically (blue). Each box imports both the
remote particles in its red zone and the remote particles in its blue zone. The import region of this method
is a strict subset of the import region of the HS analog, even though the two methods compute exactly the
same interactions when the union of all calculations by all processors is considered.

Other choices for the two zones can also ensure that all required interactions are computed. Fig. 2(c) shows
a method reminiscent of the SH method. In this method, the red zone comprises a set of equally spaced hor-
izontal slabs, while the blue zone is a vertically oriented block whose height is equal to the spatial period of the
slabs. Again, each processor imports the particles in its two zones and computes the influence of particles in its
red zone on particles in its blue zone. This method is guaranteed to compute the influence of all particles in a



Fig. 2. Four different two-zone methods for the simplified two-dimensional problem. The interaction box and import region are shown for
analogs of: (a) the HS method, (b) the NT method, (c) the SH method, and (d) the foam method. In each case, as in Fig. 1, one zone
consists of the union of the interaction box (purple) and the red region, while the other consists of the union of the interaction box and the
blue region. The import region again consists of the union of the red and blue regions. All figures illustrating two-dimensional methods
(Figs. 2–6, and 8) use square boxes with side length b. In this figure, the side length of each box is equal to 1/4 of the interaction radius
(R = 4b). The solid line encloses the influence region of the interaction box. In (c), we have numbered the rows of this influence region.
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box’s influence region on all particles in the box. In Fig. 2(c), we have numbered the rows of the influence
region of the interaction box B from 1 to 9. Box B will compute the influence of particles in rows 2, 5, and
8 on particles in B. The box directly above B will compute the influence of particles in rows 1, 4, and 7 on
particles in B, and the box directly below B will compute the influence of particles in rows 3, 6, and 9 on par-
ticles in B.

Fig. 2(d) shows a novel method that is also guaranteed to compute all required interactions. The blue zone
comprises a rectangular area centered on the interaction box. The red zone is a foam-like structure that con-
sists of boxes positioned such that their period in each dimension is equal to the width of the blue zone. This
method is an analog of the three-dimensional foam method discussed in Section 3.6.

In all the methods we have described, the intersection of the two zones is simply the interaction box. We will
assume throughout Section 3 that the zones do not overlap outside the interaction box, even though our anal-
ysis generally applies even if they do. If the zones were to overlap outside the interaction box, then some pairs
of particles that reside in the same box would be interacted in a different box.

3.2. The convolution criterion

Given a pair of zones associated with each interaction box, how can one check whether all required inter-
actions are computed? We first address this question under the assumptions of the simplified two-dimensional
model. For any particular method, we define the coverage region of a box as the largest region of space such
that the method will compute the influence of any particle in the coverage region on any particle in the box. If
the coverage region of a box includes the influence region of that box, then all required interactions will be
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computed (any additional, redundant interactions can be eliminated by filtering). Note that the coverage
region is a property of the parallelization method employed, while the influence region is not.

Under the assumptions of the simplified model, we can easily determine the coverage region of a box B

given the zones associated with a particular method. Under the assumptions of our simplified model, each
box computes the influence of each particle in its red zone on each particle in its blue zone. We first find
the set of boxes whose blue zone includes B. We then take the union of the red zones for all boxes in this
set to obtain the coverage region of B.

To determine the coverage region graphically, we first reflect the blue zone of B through the center of B to
show the set of boxes whose blue zones include B. In two dimensions, reflection through the center of B is
equivalent to a 180� rotation about B. If the center of B is at (x,y), then the reflected blue zone will include
the point (x � a,y � b) if and only if the blue zone of B includes the point (x + a,y + b). The coverage region is
the union of the red zones corresponding to each box in the reflected blue zone, as each box in the reflected
blue zone will compute the influence of all particles in its own red zone on all particles in B. The red zones of
different boxes differ from one another only by translation, so we can also compute the coverage region by
translating the red zone of B such that it has the same spatial relationship to each box in the reflected blue
zone of B that it originally had to B, and then taking the union of these translated red zones.

This process can also be described as a convolution operation. The coverage region is the support of the
convolution of an indicator function over the blue zone with an indicator function over the red zone. For
that reason, we term the criterion that the coverage region include the entire influence region the convolution

criterion. In a voxelized method without filtering, all particles in a box are interacted with the same set of
particles outside that box. If some part of the influence region of a box is not in the box’s coverage region,
then no interactions will be computed between particles in the box and particles in that part of the influence
region. For a voxelized method, the convolution criterion is thus not only sufficient but also necessary to
guarantee that all required particle interactions are computed. We consider non-voxelized methods in
Section 3.4.

For the four methods illustrated in Fig. 2, the coverage region of the interaction box is identical to its influ-
ence region. In the absence of filtering, all particles in a particular box will therefore be interacted with all
other particles whose distance from the box is no more than R in both the x and y dimensions. Fig. 3 illustrates
several other pairs of zones that also satisfy the convolution criterion. The method shown in Fig. 3(a) is similar
to that of Fig. 2(d), but in Fig. 3(a), the two zones associated with a particular box are not centered on that
box. This method also differs from those of Fig. 2 in that the coverage region of the box is larger than its influ-
ence region, with parts of the red zone lying outside the influence region. If we eliminated these parts of the red
zone, however, the coverage region would no longer include the entire influence region, so the method would
no longer ensure that all required interactions were computed. Figs. 3(b) and (c) show two exotic methods that
also satisfy the convolution criterion.
Fig. 3. Three additional methods that satisfy the convolution criterion. In (a) R = 3b, while in (b) and (c), R = 8b. Colors are assigned as
in Fig. 2, and the solid line again encloses the influence region of the interaction box. The dashed line in (a) encompasses the coverage
region associated with this method.
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3.3. Symmetric interactions

So far, we have assumed that each box computes the influence of particles in its red zone on particles in its
blue zone, but not vice versa. Because the influence of particle a on particle b typically depends on some or all
of the same data as the influence of particle b on particle a, we can reduce communication requirements by
allowing each box to also compute the influence of its blue zone on its red zone.

While the convolution criterion still holds in this case, we must modify the procedure used to derive the
coverage region from the zones. We assume for now that assumptions 1–3 of our simplified model are still
in effect (i.e., particles in a two-dimensional space interact if they are separated by a distance less than R in
each dimension, and interactions are computed using some voxelized method). We now compute the coverage
region as the union of a red-on-blue coverage region, determined using the procedure described in Section 3.2,
and a blue-on-red coverage region, computed using the same procedure but with the roles of the red and blue
zones reversed.

For a voxelized method, the blue-on-red coverage region of a box B is simply the red-on-blue coverage
region reflected through the center of B. The coverage region will therefore include the entire influence region
of B if and only if, for any point in the influence region that does not fall within the red-on-blue coverage
region, the point obtained by reflecting that point through the center of B falls within the red-on-blue coverage
region.

Fig. 4 shows modifications to the import regions of Fig. 2, assuming that each box will compute the
influence of both its blue zone on its red zone and its red zone on its blue zone. In each case, we have
cut one of the two zones roughly in half. The red-on-blue coverage region for each scheme is enclosed
within a dashed line. In each case, the red-on-blue coverage region includes at least half the influence region,
and the union of the red-on-blue coverage region and its reflection covers the entire influence region. Again,
filtering can be used to ensure that no particle pair will interact twice and that only required interactions are
computed.
Fig. 4. Methods that take advantage of particle–particle interaction symmetry. The methods shown are two-dimensional analogs of: (a)
the HS method, (b) the NT method, (c) the SH method, and (d) the foam method, with R = 4b. In each case, the dashed line encloses the
red-on-blue coverage region of the interaction box, and the solid line encloses its influence region.
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3.4. Non-voxelized methods

Thus far, we have assumed that each zone contains only whole boxes. We can often reduce the volume of
the import region, however, by using zones that contain one or more partial boxes.

To handle such non-voxelized methods, we must generalize the convolution criterion. In particular, we will
compute a coverage region for each point in a box, rather than for the box as a whole. Given a particular
method, we define the coverage region of a point as the region whose influence on a hypothetical particle
at that point will be computed by that method. The coverage region of a point may again be constructed
as the union of a red-on-blue coverage region and a blue-on-red coverage region. We construct the red-on-blue
coverage region for a point q using a procedure similar to that used for its home box B, except that we take the
union of red zones of the set of boxes whose blue zones include the point q rather than the full box B. We
compute the blue-on-red coverage region of a point using a similar procedure, but with the roles of the red
zone and the blue zone reversed.

We define the influence region of a point as the minimal region guaranteed to contain all particles required
to interact with a particle at that point. In the simplified model, the influence region is a square of side length
2R centered on the point. In the more typical scenario where particles are required to interact if separated by a
Euclidean distance less than R in three dimensions, the influence region is a sphere of radius R surrounding the
point.

The generalized version of the convolution criterion states that for each point in a box, the coverage region
of that point must include the entire influence region of that point. This criterion is both necessary and suf-
ficient to ensure that each particle will interact with all other particles in its influence region.

Fig. 5 shows a modified version of the NT-like method of Fig. 4(b), where the zones contain partial boxes.
In this illustration, we have assumed that assumptions 1 and 2 of the simplified model still apply (i.e., two-
dimensional problem with a square influence region), but we have chosen R to be a non-integer multiple of
b. The method shown ensures that each point in the box interacts with all points within a square of side length
2R centered on that point, even though no point in the box is guaranteed to interact with all points within the
influence region of the box.

3.5. Rounding and the rounding criterion

Under assumption 2 of the simplified model, two particles were required to interact if they were separated
by a distance no greater than R in each dimension. We now adopt the more typical assumption that two par-
ticles are required to interact if and only if they are separated by a Euclidean distance less than R. In two
dimensions, the influence region of each point is therefore enclosed by a circle of radius R rather than a square
of side length 2R. Likewise, the influence region of each box is a subset of the rectangular region considered in
the previous sections; its corners are rounded. We can take advantage of this fact to reduce the size of the
import region, a technique that we will refer to as rounding.
Fig. 5. A non-voxelized version of the two-dimensional NT analog of Fig. 4, for a problem where R = 4.5b. All points in the interaction
box have a red-on-blue coverage region that includes the area enclosed by the dashed line, while some points have a red-on-blue coverage
region that includes part of the dithered areas. The solid line again encloses the influence region of the interaction box.
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A point may be discarded from zone v if the point is further than R away from the closest point in the set of
zones with which v interacts. We refer to this condition as the rounding criterion. For the two-zone methods
considered in this section, the rounding criterion implies that points in the red zone may be discarded if they
are further than R away from all points in the blue zone, and points in the blue zone may be discarded if they
are further than R away from all points in the red zone. Whereas the rounding criterion is a sufficient condi-
tion to guarantee that a point can be safely discarded from a zone, it is not a necessary condition, because in
some cases one can also safely eliminate points that do not meet this condition; we describe such a method in a
separate paper [20]. One can, however, always use the generalized form of the convolution criterion to test
whether a particular rounded method is guaranteed to compute all required interactions.

Fig. 6 shows rounded versions of the HS and SH analogs. While rounding never increases import volume, it
does not always reduce it. The NT analog in Fig. 4(b) and the foam analog in Fig. 4(d), for example, are not
affected by rounding.

3.6. Two-zone methods in higher dimensions

The analytical tools discussed in the previous sections generalize in a straightforward manner to the case
where the particles lie in a three-dimensional space (or, for that matter, a higher-dimensional space). Given
a method where each box interacts particles in one zone with particles in another zone, we can use the con-
volution criterion to determine whether all particle pairs within a distance R will be interacted. The influence
region is three-dimensional, and the ‘‘convolution-like’’ process of determining the coverage region takes place
in three dimensions (or in d dimensions, if the particles lie in a d-dimensional space). We can also apply the
rounding criterion to reduce the volumes of the zones. Again, the convolution criterion is a necessary and suf-
ficient condition for ensuring that all particles within a distance R will be interacted. The rounding criterion,
on the other hand, is not guaranteed to produce the smallest permissible zones.

Fig. 7 shows the SNT method as well as three novel three-dimensional parallelization methods, to which we
refer as the clouds, city, and foam methods. All of these might be viewed as rounded, three-dimensional gen-
eralizations of the two-dimensional methods of Figs. 4(c) and (d). The foam method is discussed further in
Section 6.3.

These three-dimensional methods differ from one another in the extent to which they can take advantage of
rounding. The NT and SNT methods can only use two-dimensional rounding – in the rounded versions of these
methods, the coverage region of each point includes a cylinder of radius R and height 2R. In the high parall-
elization limit, when boxes are very small, two-dimensional rounding reduces the size of one of the zones and
of the coverage region by a factor of p/4 compared to the unrounded case. Other methods, including the HS,
clouds, city, and foam methods, allow three-dimensional rounding – they reduce the coverage region of each
point to a sphere of radius R in the high parallelization limit. Asymptotically, such rounding reduces the size
of one of the zones and of the coverage region by a factor of p/6 compared to the unrounded case and by a
Fig. 6. Rounded two-dimensional analogs of (a) the HS method and (b) the SH method, with R = 4b. In each case, the dashed line
encloses the red-on-blue coverage region of the interaction box, and the solid line encloses its influence region. As illustrated in (b), one
cannot perform valid rounding by simply discarding all parts of the import region that lie outside the influence region.



Fig. 7. Zones of several three-dimensional, two-zone parallelization methods. This figure illustrates the import regions and the zones of
the SNT (upper left), clouds (upper right), city (lower left) and foam (lower right) methods, with colors assigned as in Fig. 1.
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factor of 2/3 compared to the two-dimensional-rounded case. Likewise, in spaces of more than three dimen-
sions, rounding reduces the coverage region of each point to a multidimensional sphere in the high parallel-
ization limit for certain methods but not for others.

In a space with an odd number of dimensions, the two zones of a method guaranteed to compute all near
interactions will typically have different shapes and different volumes. In order to reduce total import volume,
one can adjust the relative volumes of the zones in two ways:

� Use non-cubical boxes, making one of the zones larger than it would have been otherwise and the other
smaller. The NT method employs this technique.
� In methods where one or both zones involve multiple non-contiguous pieces (e.g., the SH method), choose

the spacing between the pieces appropriately.

Methods in which the two zones have approximately equal volumes typically have a smaller total import
volume than methods where one zone is much larger than the other. We will return to the topic of minimizing
import volume in Sections 5 and 6.

4. k-Zone methods

The methods considered thus far involve the interaction of two overlapping zones. These methods interact
all particles in one zone with all particles in the other zone, subject to filtering criteria. In this section, we con-
sider a class of methods that make use of three or more zones, interacting any number of pairs of these zones.
Such k-zone methods interact all particles in a given zone with all particles in a subset of the other zones, sub-
ject to filtering criteria. Two-zone methods and k-zone methods together constitute the class of zonal methods.

The four zones of a particular two-dimensional k-zone method are shown in Fig. 8(a). Each processor
imports a rectangle extending a distance R beyond the interaction box in the +x direction (zone X), a rectangle
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Fig. 8. (a) Zones of a two-dimensional k-zone method, with R = b. Zone I appears in purple, X in blue, Y in red, and C in green. The solid
line encloses the influence region of the interaction box. (b) Corresponding interaction schedule.
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extending a distance R beyond the interaction box in the +y direction (zone Y), and a quarter circle of radius
R (zone C) adjacent to both zone X and zone Y. The interaction box is treated as a distinct zone (zone I). Zone
X interacts with zone Y, and zone I interacts with all the zones, itself included. Filtering eliminates particle
pairs separated by a distance greater than R, as well as duplicated local interactions. In this method, two par-
ticles interact within a box whose x base coordinate is that of the particle with the smaller x coordinate and
whose y base coordinate is that of the particle with the smaller y coordinate. The import volume of this
method is always less than that of the rounded HS analog shown in Fig. 6(a). When R is small relative to
the box side lengths, the import volume is also less than that of the NT analog shown in Fig. 4(b).

The convolution criterion introduced in the context of two-zone methods also applies to k-zone methods:
all required particle pair interactions will be computed if and only if the coverage region for each point in a
box covers the entire influence region of that point. The procedure for computing the coverage region of a
point, however, is somewhat more complicated for a k-zone method than for a two-zone method. To deter-
mine the coverage region of a point for a k-zone method, one takes the union of the zone-pair coverage regions

of that point for all pairs of zones interacted by the method, where we define the zone-pair coverage region of a
point for a given pair of zones as the region whose influence on a hypothetical particle at that point will be
computed by the interaction of those two zones. Each zone-pair coverage region can be computed using
the procedure described in Section 3.4 for computation of the coverage region for a two-zone method.

Alternatively, one can compute the coverage region for the full box by taking the union of zone-pair cov-
erage regions of the box for all pairs of zones to be interacted, where we define the zone-pair coverage region
of a box for a given pair of zones as the region whose influence on any particle in the box will be computed
by the interaction of those two zones. Each zone-pair coverage region can be determined using the proce-
dure of Section 3.3. All required particle–pair interactions are guaranteed to take place if the coverage
region of the box includes the entire influence region of the box. For a voxelized method, the converse is
also true.

In the k-zone method illustrated in Fig. 8, the union of the zone-pair coverage regions for the interaction of
the four zones with zone I includes all but two quarter-circle portions of the interaction box influence region.
The zone-pair coverage region for the interaction of zone X and zone Y covers these two remaining quarter
circles.

In our discussion of k-zone methods, we will assume that the zones do not overlap, and that a zone cannot
interact with itself. The only exception is the interaction box, which we define as a separate zone that will inter-
act with itself. In the absence of these assumptions, we could convert any k-zone method into a method with
just one zone by defining the single zone to include the entire import region and the interaction box. However,
this would lead to a situation where some pairs of particles that reside in the same processor would interact on
a different processor.

The k-zone methods have several practical benefits. First, they can reduce communication bandwidth
requirements relative to two-zone methods, both by allowing more near interactions to be computed
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for a given import volume (as in the method of Fig. 8) and by exposing additional rounding opportunities
(as will be illustrated shortly). Second, k-zone methods can be used to simplify the filtering criteria
required to avoid redundant computations. For example, the two-zone formulation of the NT method
requires filtering to prevent pairs of particles with the same x and y base coordinates from being inter-
acted twice, while a k-zone formulation of the NT method, presented below, eliminates the need for such
filtering in all zone-zone interactions except for the interaction of the interaction box with itself. Third, the
use of additional zones allows more opportunities to overlap communication and computation, because
interactions between some pairs of zones can be computed while other zones are being imported, as dis-
cussed below.

The extent to which communication between processors can be overlapped with computation depends on
the order in which pairs of zones are interacted. We use an interaction schedule (or simply schedule) to specify
which pairs of zones should be interacted and in what order those interactions should take place. The schedule
may be represented as an upper triangular matrix in which the entry in row i, column j (where i 6 j) corre-
sponds to the interaction, if any, between zone i and zone j. A zero entry indicates that the corresponding pair
of zones is not interacted at all. The remaining entries are unique positive integers indicating the order in
which the zone–zone interactions are computed: the entry containing a 1 represents the first interaction to
be computed, a 2 represents the second interaction to be computed, and so on. Part (b) of Fig. 8 shows the
schedule corresponding to the method illustrated part (a).

The order of interactions that allows maximal overlap of computation and communication depends on
details of the available computational hardware. The schedules presented in this paper were formulated using
the following procedure:

� First, we determine the order in which the zones will be imported, requiring that zone u be imported before
zone v if zone u participates in more zone–zone interactions than zone v.
� We then number the zones according to the order in which they are imported, with zone 1 representing the

interaction box, zone 2 representing the first zone imported, zone 3 representing the second zone imported,
and so on.
� We set schedule entries corresponding to pairs of zones that should not be interacted to zero. We then num-

ber the remaining entries in column-major order; that is, the interaction in row i1 and column j1 will be com-
puted before the interaction in row i2 and column j2 if j1 < j2, or if j1 = j2 and i1 < i2. This ensures that
computation of the interactions between a pair of zones that have already been imported never has to wait
for the computation of an interaction involving a zone that has not yet been imported.

To illustrate the advantages of k-zone methods, we describe the kZ-NT method, a reformulation of the NT
method using four zones. The zones correspond to the interaction box (I), the lower half of the outer tower
(L), the upper half of the outer tower (U), and the outer plate (P), as shown in Fig. 9(a). Zone I interacts with
zones I, U, and P, and zone P interacts with zones U and L; the interaction schedule is shown in Fig. 9(b)
corresponding interaction schedule. We can start computing interactions between pairs of particles in the
interaction box while importing particles from the other zones. We can also compute interactions between
P and I while importing U and L, and we can complete the import of L while interacting U with I and P.
By eliminating the interaction between I and L, we prevent pairs of particles lying in different boxes with
the same x and y base coordinates from being interacted twice. The k-zone formulation of the NT method
exposes an additional rounding opportunity not exploited by the original NT method. Because the lower
tower L interacts only with P, the portions of L that are more than a distance R from any point in P can
be eliminated, as shown in Fig. 9.

5. Lower bounds on the import volume

5.1. A general bound

In the Appendix, we establish a lower bound for the import volume Vi of a zonal method. We assume that
the zones are non-overlapping, that one of the zones is the interaction box, and that only the interaction box
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Fig. 9. (a) Zones of the kZ-NT method. Zone I appears in purple, L in red, U in yellow, and P in blue. (b) Corresponding interaction
schedule.
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zone interacts with itself. We refer to zones other than the interaction box as remote zones. We denote the total
number of zones by Nz and the number of remote zones by Nzr = Nz � 1. We find that
V i P
V b

1� 1
Nzr

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

Nzr

� �
V IR;remote

V b
þ 1

s
� 1

" #
when N zr > 1;

V i P
1

2
V IR;remote when Nzr ¼ 1;

ð1Þ
where Vb is the volume of a box and where VIR,remote is the average across all points in a box B of the volume
of the portion of the point’s influence region that lies outside B. VIR,remote is given by
V IR;remote ¼
4

3
pR3 � 1

V b

Z
r02B

d3r0
Z

r2B
d3rHðjr � r0j < RÞ;
where H is the indicator function
HðaÞ ¼
1 if a is true;

0 if a is false:

�

Eq. (1) is a strict bound that holds for all zonal methods.
5.2. A useful approximate lower bound

As discussed in the Appendix, one can obtain a larger, though approximate, lower bound by replacing
VIR,remote in the above bound by the volume of the interaction neighborhood VIN, defined as the portion of a
box’s influence region that lies outside the box. Using the parallelization parameter aR and the normalized
box side lengths ax, ay, and az, defined in Section 2, we can express the volume of the interaction neighbor-
hood VIN as
V IN ¼ V b
4pa3

R

3
þ pa2

Rðax þ ay þ azÞ þ 2aRða�1
x þ a�1

y þ a�1
z Þ

� 	
:

In the high parallelism limit, where the box volume Vb approaches zero and the parallelization parameter aR

approaches infinity, VIN and VIR,remote converge to 4pR3/3, so the approximate lower bound approaches the
strict one.
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The appendix also shows that if the box volume and interaction radius are fixed, then one minimizes VIN by
using cubic boxes (this does not imply that cubic boxes minimize import volume for any particular parallel-
ization method). Thus, for any box aspect ratios,
V IN P V b
4pa3

R

3
þ 3pa2

R þ 6aR

� �
:

Substituting this minimum value of VIN for VIR,remote in Eq. (1) gives an approximate lower bound that is inde-
pendent of box aspect ratios:
V i P V b 1� 1

Nzr

� ��1
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In the high parallelism limit, as aR goes to infinity, the a3
R term in Eq. (2) dominates, so the approximate bound

of Eq. (2) becomes
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Because VIN and VIR,remote converge in the high parallelism limit, the bound of Eq. (3) becomes strict in that
limit. The import volume of the foam method discussed in Section 6.3 approaches this lower bound asymp-
totically for Nzr = 2.

By substituting aR ¼ R=V 1=3
b in Eq. (3) and noting that Vb = Vgc/p, where Vgc is the volume of the global

cell, one can show that the minimal import volume for a zonal method scales as R3/2p�1/2 for Nzr > 1 and
as R3 for Nzr = 1. Snir also proved that scaling of R3/2p�1/2 is asymptotically optimal, albeit under slightly
different assumptions [1].

The factor ð1� 1
Nzr
Þ�

1
2 in Eq. (3) decreases as Nzr grows, starting at

ffiffiffi
2
p

for Nzr = 2 and approaching 1 as Nzr

approaches infinity. In practice, the use of multiple zones typically gives a smaller improvement in import vol-
ume, because it is generally not possible to devise a method where every pair of remote zones interacts and
where every particle pair considered before filtering corresponds to a unique near interaction.

6. Specific methods

This section details several specific zonal methods that require a lower import volume than any previously
described method of which we are aware for some range of parallelization parameter values, where the par-
allelization parameter aR ¼ R=V 1=3

b determines the effective degree of parallelism, as discussed in Section 2.
These methods are guaranteed to interact any pair of particles separated by a distance less than R. They will
interact a pair of particles twice only if both particles lie in the same box – a form of redundancy that can be
eliminated by filtering.

6.1. ES method

Intuitively, the HS method might seem to be optimal in terms of import volume in the low-parallelism limit,
but this is not the case. Fig. 10(a) shows the zones of the ES (for ‘‘Eighth-Shell’’) method, which is the three-
dimensional generalization of the two-dimensional method illustrated in Fig. 8. In the ES method, two parti-
cles interact within a box whose x base coordinate is that of the particle with the smaller x coordinate, whose y

base coordinate is that of the particle with the smaller y coordinate, and whose z base coordinate is that of the
particle with the smaller z coordinate. This method utilizes eight non-overlapping zones: the interaction box
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Fig. 10. (a) Zones of the ES method. Zone I appears in purple, EX in blue, EY in green, EZ in red, C in orange, FX in beige, and FZ in
cyan. Zone FY is hidden from view. (b) Corresponding interaction schedule.
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(I); three face subregions (FX, FY and FZ) that abut the +x, +y, and +z faces, respectively, of the interaction
box; three edge subregions (EX, EY and EZ) that abut the +y + z, +x + z, and +x + y edges, respectively, of
the interaction box; and one corner subregion (C) that touches the +x + y + z corner of the interaction box.
The import region of the ES method is smaller than that of the HS method at any degree of parallelism. The
import region of the ES method, which consists of one corner subregion, three edge subregions, and three face
subregions, is a strict subset of the import region of the HS method, which consists of four corner subregions,
six edge subregions, and three face subregions. The total import volume of the ES method is
V i ¼ V b
pa3

R

6
þ pa2

R

4
ðax þ ay þ azÞ þ aRða�1

x þ a�1
y þ a�1

z Þ
� 	

:

If the home box volume Vb and the parallelization parameter aR are fixed, the import volume of the ES meth-
od is minimized by using cubic home boxes, for which ax = ay = az = 1.

The ES method is so named because in the high parallelism limit, its import region becomes one-eighth of
the interaction neighborhood, an ‘‘eighth-shell.’’ In that limit, its import volume will be one-quarter that of the
half-shell method. On the other hand, the import volume of the ES method has the same asymptotic scaling
properties as the HS method, so at high levels of parallelism, it proves inferior to the NT method.

Fig. 10(b) shows an interaction schedule for the ES method. Zone I interacts with all of the zones (including
itself). In addition, each face zone interacts with the other two face zones and with one edge zone.

6.2. kZ-NT and kZ-SNT methods

The kZ-NT method was introduced in Section 4. The import volume of this method is smaller than that of
the original NT method because the kZ-NT method exploits an additional rounding opportunity. More spe-
cifically, the import volume of the original NT method is
V i ¼ 2Rb2
xy þ 2Rbxybz þ

pR2bz

2
:

One can show that the import volume of the kZ-NT method is smaller than that of the NT method by
Rb2
xy �

pbxyR2

2
þ 2

3
R3 when R 6 bxy ;

Rb2
xy � bxyR2 arcsin

bxy
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3
R3 þ R2zo �

1

3
z3

o when R > bxy ;
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where zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðbxy

R Þ
2

q
and where we have assumed that bx = by = bxy, because the import volumes of both

the NT and kZ-NT methods are minimized for fixed Vb, bz, and R when bx = by. This reduction in import
volume is small relative to the total import volume for high parallelization parameter values, when R is typ-
ically much larger than bxy, but is significant for lower parallelization parameter values.

The SNT method can also be reformulated using additional zones. Fig. 11 shows the zones of the kZ-SNT

method, and gives the interaction schedule. The import volume of the kZ-SNT method is smaller than that of
the original SNT method because the kZ-SNT method exploits two additional rounding opportunities, illus-
trated in Fig. 11.

If there is no space between the bars of the comb in the kZ-SNT method, then the zone BA disappears and
import of zone E becomes unnecessary, as it only interacts with BA. In that case, the remaining import region
exactly corresponds to that of the NT method. It can be shown that if one has the freedom to optimize the box
aspect ratios in addition to the spacing between the bars in the kZ-SNT method, then one minimizes the
import volume of the kZ-SNT method by reducing it to the kZ-NT method.

If the box aspect ratios are fixed, on the other hand, the SNT method has an advantage over the NT
method in that the SNT method can approximately balance the volume of the base and the comb by adjusting
the spacing between the bars of the comb, substantially reducing the total import volume at higher levels of
parallelism. The SNT method therefore has a lower import volume than the NT method for high paralleliza-
tion parameter values at fixed box aspect ratios. Likewise, the kZ-SNT method has a lower import volume
than the kZ-NT method under these conditions.
6.3. Foam method

The foam method is illustrated in Fig. 7. The interaction box imports a brick consisting of s3 boxes,
which are configured as an s · s · s cube centered on the interaction box in the x and y dimensions
and extending below, but not above, the interaction box in the z dimension. The interaction box also
imports a foam of individual boxes spaced every s boxes in each dimension. The foam extends above
the interaction box, and is rounded to form an approximately hemispherical structure. The foam method
dominates the kZ-NT and kZ-SNT methods at very high levels of parallelism because it exploits three-
dimensional rounding.
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Fig. 11. (a) Zones of the kZ-SNT method. Zone I appears in purple, BA in orange, CO in yellow, W in blue, S in white, N in green,
and E in red. This k-zone formulation exposes two new rounding opportunities: (1) a portion of E near one of its edges exceeds a
distance R from all points in BA and can be eliminated, because E interacts only with BA; and (2) a portion of N near one of its
corners exceeds a distance R from all points in CO and W and can be eliminated, because N interacts only with CO and W. (b)
Corresponding interaction schedule.
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The asymptotic import volume of the foam method for large numbers of processors is
Fig. 12
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:

Optimizing s to minimize the asymptotic import volume yields
s6 ¼ 2pR3

3V b
and
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Asymptotically, the foam method achieves the lower bound of Eq. (3) for a method with two remote
zones. Shaw [2] showed that the NT and SNT methods achieve an asymptotic import volume of

V i1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pR3V b

p
(with optimized box aspect ratios). In the high parallelism limit, the foam method hasffiffiffiffiffiffiffiffi

2=3
p

� 0:82 times the import volume of the NT and SNT methods in either their original or k-zone
formulations.

Because the foam method only becomes practical at very high degrees of parallelism, efficient implemen-
tations would likely need to use a large number of zones to hide import latencies. A practical interaction
schedule is omitted in the interest of brevity. Conceptually, the key elements of the schedule are that the
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pect ratios for each method, as well as the spacing parameter s for the foam method, were optimized at each setting of the
lization parameter to minimize import volume. The optimization procedure for the foam method involved an analytic
imation, so a fully optimized foam method may have a lower import volume than that shown here. The kZ-SNT method is not
d in the figure because it always requires more bandwidth than the kZ-NT method when box aspect ratios are tunable. The
imate lower bounds are those of Eq. (2).
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Fig. 13. Expanded view of the low-parallelization portion of Fig. 12. This figure provides a more detailed view of that portion of the data
presented in Fig. 12 that corresponds to a relatively small number of processors, and thus a relatively large box size, relative to the
interaction radius R. The foam method has been omitted, since it fares poorly throughout this range of parameter values.
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interaction box interacts with the foam, the brick, and itself, while the foam and the brick interact with one
another.

6.4. Comparison of communication bandwidth requirements

Figs. 12–15 graphically depict the import volumes of several zonal methods over a range of parallelization
parameter values. These figures include the methods that have the lowest import volume among the methods
discussed in this paper for some range of parallelization parameter values. Figs. 12 and 13 assume that the box
aspect ratios of each method are tuned to minimize import volume at each setting of the parallelization param-
eter, while Figs. 14 and 15 assume that boxes are constrained to be cubical.

When box aspect ratios are tunable, the ES method has the lowest import volume of the methods we have
discussed for aR below 0.60. The kZ-NT method has the lowest import volume for values of aR ranging from
0.60 to approximately 15. The foam method has the lowest import volume in the high parallelism limit, but
becomes competitive with the kZ-NT method only when aR is greater than about 15.

As an example, consider a reference system having a cubic global cell measuring 80 Å on a side and an inter-
action radius of 12 Å. These parameters are within the range that might be typical for a molecular dynamics
simulation of a biomolecular system; at a typical density of 0.1 atoms/Å3, such a system would contain about
51,000 atoms. For this system, the relationship between aR and the number of processors p is p � 296a3

R, so the
ES method minimizes import volume for fewer than about 64 processors3 (small computer clusters). The
kZ-NT method minimizes import volume between about 64 and a million processors (large clusters, or even
3 These figures are approximate because we have ignored the constraints on box aspect ratios due to the finite number of processors. For
example, in order for the boxes to be exactly cubical when the global cell is cubical, the number of processors must be the cube of some
integer. In practice, one might choose not to use a few of the available processors in order to obtain more convenient aspect ratios.
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Fig. 14. Comparison of the import volume for several methods, with boxes constrained to be cubical. The parallelization parameter aR

increases with increasing number of processors, increasing interaction radius, and decreasing simulated system size. Import volumes for all
methods are represented relative to that of the HS method (Vi,HS) at each parallelization parameter setting and plotted on a log axis. The
spacing parameters for the foam and kZ-SNT methods were optimized at each setting of the parallelization parameter to minimize import
volume. The approximate lower bounds are those of Eq. (2).
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ultraparallel hardware such as QCDOC [21] or Blue Gene/L [22]). The foam method dominates only at
extreme levels of parallelism involving more than a million processors.

When box aspect ratios are fixed, the kZ-SNT method requires a smaller import volume than the kZ-NT
method for sufficiently large parallelization parameters. For cubic boxes, the ES method minimizes import
volume for aR below 0.66, followed by the kZ-NT method for aR between 0.66 and 2.7 and the kZ-SNT
method for aR between 2.7 and approximately 16. The foam method again has the smallest import volume
in the high parallelism limit, but becomes competitive with kZ-SNT only for aR above 16. For our reference
system, the ES method has the lowest communication bandwidth of the methods we have discussed for small
clusters (up to about 85 processors), the kZ-NT method has the lowest bandwidth for large clusters (about 85
to about 5800 processors), the kZ-SNT method has the lowest bandwidth for existing ultraparallel hardware
(about 5800 to 1.2 million processors), and the foam method has the lowest bandwidth only beyond 1.2 mil-
lion processors.

In practice, the ease with which box aspect ratios can be tuned depends on the architecture of the commu-
nication network. The dimensions of the global cell are usually determined by the physical system being sim-
ulated. In a network where communication between any two processors is equally expensive, one can easily
change the dimensions of the box grid, so aspect ratios are relatively unconstrained. On a network with a mesh
or toroidal topology (e.g., in Blue Gene/L or in Cray’s T3D, T3E, and XT3 systems [23,24]), on the other
hand, it is generally most convenient for the box grid to correspond to the network grid, determining fixed
box aspect ratios.

Figs. 12–15 also show the approximate lower bounds of Eq. (2) for two remote zones (Nzr = 2) and for
an infinite number of remote zones (Nzr =1). The parallelization methods discussed in Section 6 come
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Fig. 15. Expanded view of the low-parallelization portion of Fig. 14. The foam and kZ-SNT methods have been omitted, since they fare
poorly in this range of parameter values.
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close to the Nzr = 2 bound at all levels of parallelism, with the foam method approaching the bound
asymptotically, albeit slowly, at high levels of parallelism and the ES method actually beating the
Nzr = 2 bound at low levels of parallelism by using more than two remote zones. The gap between actual
import volumes and the Nzr =1 bound reflects the fact that this bound is tight only when all remote zones
interact with one another without producing redundant interactions, which is rarely if ever the case for a
method with a large number of zones.

We have not proven that the methods of Section 6 are optimal in terms of import volume. In fact, we have
discovered novel neutral territory methods, to be described in a subsequent paper [25], whose import volumes
are at least slightly smaller than that of any method described in this paper over a wide range of parallelization
parameters. Another technique called the midpoint method, which we also describe in a separate paper [20], has
an import volume identical to that of the ES method at all levels of parallelism and offers certain practical
advantages over the ES method on some machines. IBM researchers recently published an independently
developed parallelization technique related to the midpoint method that uses nonuniform boxes for load bal-
ancing [26,27].

Our assumption that Gx P bx + 2R, Gy P by + 2R, and Gz P bz + 2R (Section 2) implies that the global
cell must be partitioned at least once along each dimension (i.e., the mesh of boxes must be at least
2 · 2 · 2). When only a small number of processors are available, methods that involve a partition of the space
into boxes along only one or two of the three dimensions may minimize import volume. If we partition the
global cell into a 1 · 1 · n mesh of boxes, implying that by = Gy and bz = Gz, then the only communication
required will be in the positive and negative z directions. If we partition the global cell into an 1 · m · n mesh
of boxes, implying that bz = Gz, then the only communication required will be in the yz plane. In either case,
one can still utilize the zonal methods we have introduced, but the formulae for their import volumes will be
different from those presented previously. When parallelizing our reference system across 16 or fewer proces-
sors, application of the ES or kZ-NT methods with a partition along two dimensions will require a lower
import volume than application of the ES method with a partition along three dimensions. If fewer than
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six processors are available, a traditional spatial decomposition method such as the HS method with a
partition along one dimension will require a lower import volume than any of the methods we have described
with a two- or three-dimensional partition.

7. Conclusions

This paper has introduced a broad class of techniques, which we refer to as zonal methods, for the efficient
parallelization of range-limited N-body problems. This class includes both traditional spatial decomposition
methods and the methods of Shaw and Snir as special cases; it also includes a wide variety of ‘‘neutral terri-
tory’’ methods that have not been described previously. We have described a test to determine whether a par-
ticular zonal method is guaranteed to interact all pairs of particles separated by a distance less than R. We
have also demonstrated a systematic method for exploiting opportunities for ‘‘rounding’’, and have shown
how the use of three or more ‘‘zones’’ can reduce communication bandwidth requirements, overlap commu-
nication time with computation time, and efficiently avoid the computation of redundant interactions. We
have also derived strict and approximate lower bounds on the import volume requirements of zonal methods
at various degrees of parallelism.

The current paper also introduces new methods that have lower communication bandwidth requirements
than any previously published method of which we are aware at both very low and very high levels of par-
allelism. For the broad class of problem and system parameters that lie in between these two extremes, we
have also described a new set of modifications to the previously described NT and SNT methods that
reduce their communication bandwidth requirements below those of any published method of which we
are aware.

While this paper has focused primarily on import volume as a metric for comparing different parallelization
methods, the best choice of parallelization method may in practice depend on other factors as well. These
include:

� Load balancing. The efficiency of a given computation may depend in part on the ability of the parallelization
method used to balance computational load across the available processors. Unlike home territory methods,
neutral territory methods can achieve a significant degree of load balancing even in the case where the num-
ber of simulated particles (as distinct from the number of particle interactions) is smaller than the number of
available processors, since neutral territory methods can calculate pairwise interactions within processors
that contain no particles. We discuss techniques for load balancing further in a separate paper [20].
� Redundant interactions. To maximize computational efficiency, it is desirable to interact only pairs of par-

ticles that lie within a distance R of one another, and to interact each such pair only once. One can eliminate
redundant interactions through a process of ‘‘filtering,’’ but the filtering process itself imposes an additional
computational load. Parallelization methods that reduce the need for filtering will in general improve com-
putational efficiency.
� Communication latency. The amount of time spent on communication depends not only on the amount of

data to be communicated but also on the amount of time required to transmit even a minimum-sized packet
of information between two processors (communication latency). In some parallel architectures (e.g., a
mesh-connected machine), particles in nearby boxes can generally be imported more quickly than those
in distant boxes, since the latter may require that a given information packet pass through multiple inter-
mediate processors before arriving at its intended destination [23,24,28]. In such cases, methods like the
midpoint method [20] that tend to import particles from nearby boxes may have a comparative advantage.
Furthermore, some parallelization methods may do a better job than others in balancing the amount of
data to be transmitted over different communication links.
� Overlap of communication and computation. The total time required to evaluate near interactions will in gen-

eral depend on the extent to which communication and computation can be performed simultaneously.
Certain k-zone methods lend themselves particularly well to hiding communication time by overlapping
it with the required computation. More generally, the calculation of near interactions is often one of several
computations to be performed in parallel for a particular simulation. This may present additional oppor-
tunities for overlapping computation and communication.
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The best parallelization method for a particular range-limited N-body problem on a particular parallel
machine will in general depend on a variety of parameters, including the size and shape of the system being
simulated, the distribution of particles within the simulated system, the interaction radius necessary to achieve
the level of accuracy required by the problem at hand, the number and speed of the available processors, the
topology of the communication network through which they are connected, and the operational characteris-
tics associated with each communication link. Given the number of and interactions among these consider-
ations, it is not feasible to formulate a simple, single set of criteria for selecting the best choice of
parallelization scheme for all possible applications. The analysis and methods presented in this paper,
however, may provide a useful framework for choosing among an expanded range of highly efficient parall-
elization schemes, and may provide a theoretical foundation for future work in this area.
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Appendix

Derivation of an exact lower bound on import volume

We derive a lower bound on the import volume of a zonal method under the following assumptions:

� The method uses boxes with a predetermined volume (Vb) and predetermined aspect ratios.
� The zones do not overlap. Each interaction box has a total of Nz zones, of which one is the box itself. We

denote the volume of the import region by Vi and the number of remote zones by Nzr, where Nzr = Nz � 1.
Note that a method with two zones whose intersection is the interaction box can be reformulated as a
method with three non-overlapping zones.
� A pair of particles in the same box must interact in that box. This implies that only the interaction box zone

can interact with itself.
� The method guarantees that any two particles within a distance R of one another are guaranteed to interact.
� As in the remainder of this paper, Gx P bx + 2R, Gy P by + 2R, and Gz P bz + 2R, implying that the glo-

bal cell must be partitioned into at least a 2 · 2 · 2 mesh of boxes.

In a zonal method, the positions of two particles uniquely determine the processor on which they will inter-
act. We can therefore think of each processor as interacting points in space with one another, whether or not a
particle is located at each point. By integrating over all pairs of points that must be interacted, we can express
the total quantity of required point–point interactions in units of volume times volume. The influence region
of any point q is a sphere of radius R, whose volume we denote by V IR ¼ 4

3
pR3. The total quantity of required

point–point interactions to be computed by the ensemble of p processors is therefore 1
2
V gcV IR, where Vgc is the

volume of the global cell and the factor of 1/2 reflects the fact that each pair of points needs to be interacted
only once. In a zonal method, each processor is responsible for the same quantity of point–point interactions,
so the quantity required of each processor is
Irequired ¼
1

2
V gcV IR=p ¼ 1

2
V bV IR:
Some of these required interactions involve two points within the same box. We denote the quantity of local
interactions to be computed in a box B by Irequired,local and express it as
Irequired;local ¼
1

2

Z
r02B

d3r0
Z

r2B
d3rHðjr � r0j < RÞ;
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where H is the indicator function
HðaÞ ¼
1 if a is true;

0 if a is false:

�

The remainder of the required point–point interactions involve points with different home boxes, and are
therefore remote interactions. We denote the quantity of remote interactions required of each processor by
Irequired,remote and compute it as
Irequired;remote ¼ Irequired � Irequired;local ¼
1

2
V bV IR �

1

2

Z
r02B

d3r0
Z

r2B
d3rHðjr � r0j < RÞ:
We can write this expression as Irequired;remote ¼ 1
2
V bV IR;remote, where
V IR;remote ¼ V IR �
1

V b

Z
r02B

d3r0
Z

r2B
d3rHðjr � r0j < RÞ:
One can think of VIR,remote as the average volume of the portion of a point’s influence region that lies outside
its home box, with the average computed over all points in a box.

Next, we calculate the quantity of remote point–point interactions computed by each processor in a zonal
method as
Iactual;remote ¼
XNz

j¼1

XNz

k¼jþ1

IjkV jV k;
where Vj is the volume of the jth zone and Ijk equals 1 if zones j and k interact and 0 otherwise. (By omitting
cases where j = k from this sum, we have omitted the interaction between the interaction box and itself.) If we
assume that zone 1 is the interaction box, then
Iactual;remote ¼ V bV i þ
XNz

j¼2

XNz

k¼jþ1

IjkV jV k 6 V bV i þ
XNz

j¼2

XNz

k¼jþ1

V jV k;
where equality holds if and only if all remote zones interact with all other remote zones. For a fixed number of
remote zones and a fixed import volume Vi, one maximizes the quantity

PNz
j¼2

PNz
k¼jþ1V jV k by setting the vol-

umes of the remote zones equal to one another, so
Iactual;remote 6 V bV i þ
XNz

j¼2

XNz

k¼jþ1

V i

N zr

� �
V i

Nzr

� �
¼ V bV i þ

N zrðNzr � 1Þ
2

V i

Nzr

� �2

¼ V bV i þ
1

2
1� 1

Nzr

� �
V 2

i :
The actual quantity of point–point interactions computed by each box must not be less than the required
quantity, so Iactual,remote P Irequired,remote. Substituting in the previously derived expressions for Iactual,remote

and Irequired,remote gives
V bV i þ
1

2
1� 1

N zr

� �
V 2

i P
1

2
V bV IR;remote:
Solving for Vi, we find that
V i P
V b

1� 1
Nzr

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

Nzr

� �
V IR;remote

V b
þ 1

s
� 1

" #
when N zr > 1;

V i P
1

2
V IR;remote when Nzr ¼ 1:

ð4Þ
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A useful approximate lower bound on import volume

The lower bound of Eq. (4) involves VIR,remote, the average volume of the portion of a point’s influence
region that lies outside its home box. The expression for VIR,remote involves a non-analytic integral, and the
derivation of the bound provides only limited insight into how to design methods with an import volume near
the lower bound. One can obtain a useful approximate lower bound by replacing VIR,remote in the bound with
the volume of a box’s interaction neighborhood, defined as the portion of a box’s influence region that lies out-
side the box. (The volume of the interaction neighborhood is simply the volume of the influence region minus
the volume of the box.) As the interaction radius becomes large relative to the side lengths of a box, this
approximation for VIR,remote approaches the exact value of VIR,remote. For smaller interaction radii, this
replacement amounts to raising the lower bound to require that the quantity of remote point–point interac-
tions computed by the method is greater than or equal to that computed by the HS method.

As described by Shaw [2], the interaction neighborhood (VIN) of a box may be divided into six face subre-

gions, rectangular parallelepipeds of width R abutting each face of the box; twelve edge subregions, quarter-
cylinders of radius R abutting each edge of the box; and eight corner subregions, octants of a sphere of radius
R abutting each corner of the box. The total volume of the corner subregions depends only on R, whereas the
total volume of the edge subregions is proportional to the sum of the box side lengths, and the total volume of
the face subregions is proportional to the surface area of the box. We can write the volume of the interaction
neighborhood (VIN) as
V IN ¼
4pR3

3
þ pR2ðbx þ by þ bzÞ þ 2Rðbybz þ bzbx þ bxbyÞ;
where bx, by, and bz are the side lengths of the box. For a fixed box volume, one minimizes both the surface
area and the sum of the side lengths by choosing the side lengths to be equal, as can be shown using calculus.
Therefore VIN is smaller for a cubic box than for any other box of the same volume.

Using the parallelization parameter aR ¼ R=V 1=3
b and the normalized box side lengths ax ¼ bx=V 1=3

b , ay ¼
by=V 1=3

b , and az ¼ bz=V 1=3
b , and noting that axayaz = 1, VIN can be rewritten as
V IN ¼ V b
4pa3

R

3
þ pa2

Rðax þ ay þ azÞ þ 2aRða�1
x þ a�1

y þ a�1
z Þ

� 	
:

Substituting VIN for VIR,remote in Eq. (4) gives the approximate lower bound:
V i P V b 1� 1

Nzr

� ��1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

N zr

� �
4pa3

R

3
þ pa2

Rðax þ ay þ azÞ þ 2aRða�1
x þ a�1

y þ a�1
z Þ

� 	
þ 1

s
� 1

( )

when Nzr > 1

V i P
1

2
V b

4pa3
R

3
þ pa2

Rðax þ ay þ azÞ þ 2aRða�1
x þ a�1

y þ a�1
z Þ

� 	
when Nzr ¼ 1:
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